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DIFFERENTIAL FLATNESS AND COOPERATIVE TRACKING IN THE

LORENZ SYSTEM*

I,UIS (;. CRESPO ¢

Abstract. In this paper the control of the Lorenz system for both stabilization and tracking problems

is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control

-only variable physically tunable- a barrier in the controllability of the _ystem is incidentally imposed. This is

reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome

this difficulty are designed and evaluated. The transition through tile manifold defined by such a singularity

is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a

conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged

to the whole state space and the need for high control efforts is mitigated. In addition, the differential

parametrization of the problem is used to track nonlinear flmctions of one state variable (single tracking)

as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-

integrable differential equations for the nominal fiat output in stead)-state are considered. In particular, a

novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very

well the control design.

Key words, feedback linearization, differential flatness, Lorenz s::stem, cooperative tracking, non-linear

control

Subject classification. Applied and Numerical Mathematics

1. Introduction. The analysis and control of chaotic systelns have attracted considerable attention

in recent years. A chaotic system is strongly sensitive to small changes in the initial conditions. Such a

behavior can be beneficial or detrimental depending upon the systen and the objective under investigation.

In this paper we will make use of the chaotic response of the Lor(_nz ,_ystem to enhance the performance and

controllability-of feedback linearization based controllers.

The Lorenz system is a simplified model of a thermally driven fluid convection system between parallel

plates. Depending on the system parameters, such a system exhibits a rich spectrum of responses. The

control of the Lorenz system has been studied by several researchms in recent years. Vincent and Yu [10]

proposed a bang-bang optimal control for stabilizing the unstable equilibrium points of the system. Gao and

colleagues [5] studied the nonlinear feedback control based on state space design. Chen and Liu [2], Talwar

and Namachehivaya [9] and Alvarez-Gallegos [1] investigated the nonlinear regulation of the Lorenz system

by using the feedback linearization techniques with different control structures and control objectives.

From the physics point of view, it is natural to select the R_Jyleigh number as the control variable.

However, such a strategy makes the system uncontrollable at the plane x = 0. This control variable was

used by the author in [3]. When feedback linearization technique ._,are applied, this feature appears as a

singularity in the state transformation. When the feedback linearization techniques are applied, this feature

also appears as a singularity in the state transformation. The conm)llability of the systein is limited to half

of the state space. Tile singularity is also responsil)le for extremely high control efforts in its vicinity. In this

"This work wa_ssupported by the National Aeronautics and Space Adminislration under NASA Contracl No. NAS1-970,16

while the author was in residence at ICASE NASA Langley Research Center
tlCASE, Mail Stop 132C, NASA Langley Research Center, tlampton, VA 23681-2199, USA, e-mail: lgcrespo©icase.edu.



paper,weproposecoinpositecontrollersto overcomethis limitation.Withinaboundarylayerthat contains
sucha singularity,thechaoticresponseof thesystemandits responseto stepinputsareusedto drivethe
systemthrough.Furthermore,tile differentialflatnessof thesystemis usedto aimfor controlobjectives
thatdoanddonotadmita closedformexpressionforthecorrespondingflat outputof thesystem.

Thispaperisorganizedasfollows.A briefdescriptionandanalysisoftheLorenzsystemarepresented
in Section2. Section 3 discusses the feedback linearization and its application to the Lorenz system. In

Section 4, composite c'ontrollers are designed and evaluated for both stabilization and tracking problems.

2. The Lorenz System. The Lorenz model is obtained from studying a fluid la_r heated from below

and cooled from above such that a temperature difference is established across it. The conw_ction motion

is described by the Navier-Stokes equations. Taking Fourier expansion of these equations along two spa-

tial directions and truncating the remaining expressions to retain only three modes leads to the following
simplified model

= o(y - x),

[1 = px - y - xz,

_"= -,qz + xy,

(2.1)

where c_, p and z? are real parameters denoting the Prandtl number, the Rayleigh number and a geonmtric

factor, respectively. The state variables x, y and z represent measures of fluid velocities and the spatial

temperature distribution in the fluid layer under gravity. From the physical point of view, the Rayleigh

number p can be easily manipulated by changing tile heat transfer to the fluid from below. This parameter

will be treated as the control variable. We denote u _= p.

For the brevity of discussion, we assume that the control converges to a constant value in steady state

denoted as u,, _= limt__ u. The singular points of the system can be parametrized with u_. The locus of

these points is given by a family of curves

X_ = [0,0,0] T, X._, 3 = [-t-V/,3(u_ _ _ 1), +v/_(u_, _ _ 1),u_ - 1]T. (2.2)

Linearization about X i' leads to characteristic equation )_3 + A,_:_ + B,_ + C = 0, where A = 1 + 3 + a,

B = 3(a + 1)+ a- us_ and C = 3(a- u_). Linearization about X_, 3 leads to ,4 = 1 + 3 + a B = S(us_ + a)
and C = 28a(u,, - 1).

The stability analysis leads to the following observations. When u_ < 1 the origin of the system is a

stable equilibrium point. When 1 < u_s </_ = a(a + ,_ + 3)/(a -/3 - 1), X_ is unstable and X_, a are stable.

When u_ >/5 there are no stable equilibrium points and the system reaches a chaotic regime.

At us_ = 1 a pitchfork hifurcation takes place at X_', while for u_ = 15a suberitical Hopf bifurcation

occurs at X_, 3. For u,_ _>/5, the system is driven by repulsions exclusively while the trajectories are confined

to a region of finite volume forming a strange attractor. The response on the attractor is chaotic. For

additional information, the reader can refer to [8]. In the numerical simulations, the parameters to be used

are a = 10 and _ = 8/3.

3. Feedback State Linearization.

3.1. Background. Consider the single input system

*=f(x) + g(x)u, (3.1)



where x E R n is the state vector, uE R is the control and f, g : Rn--+ R" are suiTiciently smooth nonlinear

functions of their arguments. The Lie derivative of g(x) with respect To the vector field f(x) is defined as

adkg(x) = If, adk-lg](x) for k_> ],

a_g(x) = g(x), (3.2)

where IX, Y] = VY • X-VX. Y is the Lie bracket of the vector fiehts X and Y. According to [6], there

exists a real value function/k(x), defined in a neighborhood U(x0) of x0 such that

LgA(X) --=LadrgA(X) ..... Lad,_-_gA(X) = 0, (3.3)

Lad, _ _gA(Xo) # 0,

where LgA(x) = VA(x) • g denotes the Lie derivative of the real-valae function A(x) with respect to the

vector field g, if (i) the matrix

•,,- (3.4)C = [g(xo), adfg(x0), ad_g(xo),..., mf lg(x0)],

has rank n and (ii) the distribution D =span{g(x),adfg(x), aor_g(x) ..... ad_-lg(x)} is involutive. Further-

more, there exists a transformation z = O(x) in U(x0) such that

_(x) = [,k(x), Lr)_(x), ..., n_'-' £(x)] v, (3.5)

d'_-_)t(x) 1T
= [A(x), _(x),..., _ _

The system (3.1) is transformed into a chain of integrators

zt =z2, k'_ =z3, '--, z,_-I =z,_, _,, =tl(x)+b(x)u--v- (3.6)

v(x) = a(x) + b(x)u = LgL_'-a,k(x) + L}')_(x)u, (3.7)

where zi = L_-lA(x) (i = 1 .... , n). The control for this linear system can be designed by full state feedback

and pole placement techniques. For example, the control v can bt, t a_:en as:

v((I)-1 (z)) = -Kz (3.8)

where the feedback gains K are chosen to place tim closed loop poles at the desired locations in the left hand

side of the complex plane. For tracking problems, the feedback signal will be the tracking error zd - z where

Zd is a pre-specified reference signal in the z-domain.

The control in the physical domain is then given by:

u(x) = [v(_ -x (z)) - a(x)] /b(x). (3.9)

It should be noted that u(x) becomes unbounded when b(x) _ (}.

3.2. Feedback Linearization of the Lorenz System. For the Lorenz system f = [cr(y - x), -y -

xz, -/3z + xy] 7' and g = [0 x, 0]T. After some manipulations we obtain

adg(adfg) = [0, 2ax, 0] _t ,

adfg = [-ax, a(y - x) + x,--x2] :' , (3.10)

ad_g= -x 3 - 2axy + (a - 1)2x -f- a(1 - cy)y .

(3or - 1 -3)x 2 - 2_xy



By evaluatingtherankof theC matrix in Equation(3.4),wefind that the rankis 3 exceptwhenthe
transformationissingularat x -- 0 or a =/_/2. At the singularity at x = 0,-the system (2.1) is completely

insensitive to the control. This restriction imposes an unavoidable barrier in the controllability of the system,

leaving just half of tile state space at the disposal of the control. Which half the system stays in depends on

the initial condition. The closer the system gets to this singular plane, the higher the control effort will be,

approaching positive or negative infinity as x approaches to zero.

From Equation (3.3), the function A(x) , known as the fiat output of the system [4, 7], satisfies

0A

x_ :0, (3.11)

0A 0A _ x2 0A
-_ + ((1- _)x + _) _ _ = 0.

Solving this set of equations, we obtain A = x2/2 - c_z + k, where k is tile integration constant. Equation

(3.5) leads to the state transformation

Z-----[Zl, Z2, Z3] T : (I)(x)

=[x2/2 - az + k, a(_qz - 2), a_fxy + 2a2x 2 - crfl2z] T,

(3.12)

where ") _--3 - 2a. The inverse transformation is given by

x=[x,Y,Z] "r=- (I)-1 (z) (3.13)

It= ± 2(/3e + z'2) ± 2a,_zl + (/3 + 2a)z2 + z3 - 2aflk 2ae + z.________j2

' av/2_(_e + z2) ' _'Y '

where e - zl - k. The transformed dynamic system takes the form of Equation (3.6) with n = 3 and a(x)

and b(x) in Equation (3.7) given by

a(x) = --rT_/x2z -- 4cr3x 2 -- a(? +/_2 q_ a_4 -- 6a2)xy + a27y 2 + a_3z,

b(x) = a',/x 2.

(3.14)

By using the solution of the PDE (3.11) and the system equation (2.1), we have

= X2/2 -- az + k,

= c_(Z_- x2),

= a'yxy + 2a2x 2 - fl2az.

(3.15)

The state variables and the control can be differentially parametrized using the fiat output.

= + 2vq;/%

y = q-(A + (/_ + 2a)£ + 2a_qA - 2ak)/(a2V/_) , (3.16)

1

u - 4a2_fx 2 {-22_xv - 2_3_(flx + _ + 2ca - ak)'_ - 2_(4kc - 2c 2 - 2k 9 + 2a,_x +

;'_?;¢ + 2ai_'_c - _/a_k)A - 4afl(/_9_ + 4kc - 2c 2 -- 2k'_)A - 8akc 2 + 4a_q"/k_ - 8ak 3 +

16ak')c + fl'z.i(f? + 2a)_2 + 2Z_, (2 + a))_ + _7)[ 2 + 2aZ27)_A + 2o'Z3_A},

where c = _ +/tA, _ = c- k and v ---_"A'. Inequality range constrains on u can be imposed by designing

composite controllers. This is explained in the next section.



4. CompositeControl. Fromtheabovediscussions,weknob'that a feedbacklinearizationbased
controlis not ableto drivethesystemacrosstile singularityimpos('dby the transformation.This fact
restrictsthecontrollabilityof thesystemto a portionof thestatespace,half in thiscase,andleadsto
extremelyhigh control effort in tile vicinity of the singularity. In this section we propose a composite

controller to overcome such a difficulty.

Denote the hyper-plane that makes the state transformation singular as 9(x) = 0. Define the composite

controller given by:

= _ ul if Ix - 9(x)I > 6 (4.1)
t/(X)

( uz otherwise

where (f defines the thickness of a boundary layer about the singular plane, ul is the control expression

resulting from using a conventional control method and u2 is the amplitude of a step input set according to

the particular control objectives.

The condition for applying ul can be replaced by lull < U, provided that control saturation occurs in

the vicinity of the boundary layer. In this paper, g(x) = 0 and u2 is; a step input that induces a chaotic

response within the boundary layer i.e.u._ > _5.

The non-empty intersection of the attractor and the two hyper-plan,'s defined by Ix-g(x)l = _ guarantees

that the crossing of the boundary layer occurs. This can be proved ae_ follows. Let's call hi(x) for i = 1,2

these two planes. Assume that (i) the chaotic response is moving within a strange attractor whose state

space location is given by A1 and that (ii) At n hi(x) ¢ 0. The crossing of the hyper-plane hi(x) will not

()(:cur iff there exist a subset Aa C A1 such that A._ N hi(x) = q) for all times i.e. A2 is a strange attractor

by itself. This implication violates the irreducibility property of A1 1hen A2 can not exist. The need for

At C1hi(x) ¢ 0 imposes bounds to (f from above.

Notice that in this scheme the control does not have the authorit/to manipulate tile transient part of

the transition from one side of the boundary layer to the other one. For some states several crossings of g(x)

might occur before the system leaves the boundary layer. Such behavi(w is clearly undesirable. Refinements

and improvements of the control within the boundary layer can be achieved by taking into consideration

the control objective and the state of the system. This practice howew,r was not implemented in this study.

Once the system leaves the boundary layer ul is applied and the stab lization/tracking is achieved. In this

paper ul is given by u in Equation (3.16). Due to the structure of the controller, global uniform asymptotic

stability about the reference signal r(x(t) is achieved at the locations where the intersection of r(x(¢)) and

the boundary layer is an empty set.

For stabilization, the linear system given by Equations (3.6), (3.7) and (3.14) can be controlled by pole

placement techniques. Taking the feedback control v as:

tl : O_lg I -1- O2Z2 "['-Oz3Z3, (4.2)

where the feedback gains a i are chosen to place tile closed loop poles in t im left hand side of the ('omt)lex plane.

On the original state variables, the control can t)e obtained after substfi uting Equations (3.12) and (3.8) into

Equation (3.7). Since this procedure stabilizes z, the steady-state value,'; in the x-domain can be controlled by

manipulating k according to Equation (3.13). The reader nmst notice that stabilization about the origin using

feedback linearization requires infinite control effort, i.e. limx--m u(x) = lim___m(v(x) -a(x))/b(x) = +vc.

However, from the stability analysis we know that any control satisfying 0 < uss < 1 will drive the system

to the origin from a given initial condition.



4.1. Single State Tracking Control. In this section we present examples for stabilization and track-

ing control problems that involve a single state. The tracking signal xd(t) = a + bsin(t) for the state variable

x(t) is considered here. The fiat output corresponding to the tracking signal xd(t) is given by

= + a + 6'abl( 2+ 1)) {Jsin(t) - cos(t)} (4.3)

- (b2^//(2_g 2 + S)){(3/2)cos(2t) - sin(2t)}

The difference between the system flat output, Ad - A -- Zd -- zl is the tracking error. We take the full state

feedback control v for tile tracking problem as follows

v = "A'd+ K1 (Ad - A) + K2(J_d -- A) + K3(Ad - A) (4.4)

The control gains Ki arc selected such that the tracking error vanishes exponentially. It should be noted

that the tracking control is designed in the transformed space z, and therefore is indirect for x.

The state variables and the nominal control ()btained from Equation (3.16) are shown in Figure 5.1 for

a = 5 and b = 6. The control grows unbounded near the singularity. Time evolutions for different xd(t)

are shown in Figures 5.2 and 5.3 using 5 = 0.1 and (f = 0.2 respectively. In all the cases the control is

activated after 30 seconds of chaotic regime. In the first case, the system does not reach the boundary layer

and perfect tracking is achieved after a short transient. If the control is activated when the singular plane

is between the state of the system and xd(t), the system would reach and cross the boundary layer before

settling down. This control was designed such that u2 is applied when ul < 5. In this fashion the control

range constraint u > 0 is imposed. In the second case, the desired trajectory crosses repeatedly the singular

plane forcing the system to reach the boundary layer several times. The effect of not applying the nominal

control is slightly noticeable. The reader must notice that both the x and y states behave similarly onc, e tile

system reaches the strange attractor.

Figure 5.4 shows the results of the composite controller with a wider boundary layer 5 = 0.5. Recall

that the control does not have authority within tile boundary layer and relies on the chaotic behavior of

the system to cross it. As expected, the increase of 5 has a detrimental effect on the control performance.

For even higher values of 5, tile system might be trapped in the boundary layer while the desired trajectory

completes half a cycle.

4.2. Cooperative Tracking Control. Now we use the differential parametrization of the states and

control to aim for tracking objectives that involve combinations of the states. The problem statement is as

follows. Find ul in Equation (4.1) such that the system is driven to the manifold defined by h(x,u,t) = 0

from any initial condition. In this problem, the system would track signals that imply cooperative relations

among the states, being the tracking of a trajectory of a particular state a particular case. Again, the

composite structure of the control enable to achieve global stability about the desired tracking function. In

the examples to come we will take u2 = 30 > fi within the boundary layer.

Depending upon the tracking objective, the equation for the desired fiat output can be integrable or

non-integrable. Both cases are considered next.

4.2.1. Problems with closed form solution for Ad. Once the control objective h(x,u,t) = 0 is set,

the Equations (3.16) lead to an ODE for the desired fiat output Ad. Such an equation is in general non-linear.

In this section we study problems where a closed form expression for the steady state solution can be found.

As the first example, we take h(x,u,t) = x "2- z - a - b sin(wt). The corresponding differential equation

for the fiat output is given by

-_a + (2a_/_)Ad = aaT/dp + (ba'),/¢) sin(wt),



where0 - 2a- 1 and _ = !_- 1. Solving we find

Ad = a7/(2_) + _lexp{-2ta_/¢} + {2ha2^/( sin(wry - _oba_: cos(wt)}/(4a2_ 2 + _J02) • (4.5)

For our purposes, providing that the transient response vanishes, only I he steady' state component is needed.

This expression along with Equations (3.16) and (4.4) fully, determine the control. After some manipulations

we find that the system reaches stationarity at

u_, = 2 + (<,- _)/(,

(4.6)

Numerical results for a = 15 and b = 5 are shown in Figure 5.5. For this particular case, the system crosses

tile boundary layer twice. Figure 5.6 shows the numerical results for tt = 10 and b = 0.

As a second case, we use h(x) = x 2 + y2 + z 2 _ R 2. This problem can be interpreted as the stabilization

of the system about the surface of a sphere. The corresponding differential equation for )_d, not shown here,

is non-linear. However, because the homogeneous solution vanishes with time we can solve for particular

solution and use it in Equation (4.4) to cak:ulate the control. The corresponding flat output and steady

state values are:

T

= [+ (o- + (o- 1,o-- ,

u,._= ± (i + 0- _,_),

where 0 = V/_ + R 2. Stationary" values of the states (:an also be found by' solving for the values of k in

Equation (3.1.a) that satisfy, h(x) = 0 when z -+ 0 (due to Equation (3.8). Numerical results for R = 2 are

shown in Figure (5.7). In the case shown, the boundary layer is not leached.

4.2.2. Problems without closed form solution for Ad. In the previous section, the tracking objec-

tives led to stable ODEs for -_d whose particular solution could be found in closed form. In this section, we

consider problems in which this is not the case.

By integrating numerically and sinmltaneously both the state Eq,mtions (2.1) and tile ordinary differen-

tim equation for the desired fiat output )_d, tracking can be achieved. It is important to notice that realizable

objectives imply stable solutions for )_d. The tracking error dynamical, set by, Equation (4.4), makes tile flat

output in Equation (3.15) converge to the steady state value of Ad. '[racking is achieved once the transient

for both the real and tile desired flat outputs vanish.

Due to the non-linear character of the equation for +_d,the steady vtate response might exhibit dependence

to tile initial conditions. For this reason, the control design must strut by searching for the initial conditions

in ,/d and its derivatives that lead to steady state trajectories that sa+ isfy the desired response specifications.

The reader must notice that a fixed number of derivatives of ,/,t, three in this case, are needed to tmild v.

This can be obtained by performing additional differentiations on ttle ODE for +td.

As an example, we use the energy-like expression h(x,t) = x _ + y2 + mz - E(t).The corresponding



differentialequationforAdisgivenby:

0= -2E3_r2a2(Ad+ Ad_--k) + 2mTa_A_ - 4mk?a2Ad + 4m?a2_Ad_d +

m?'a-D'ad + 4ink2? or2 + 2m3o,i_2AdAd -- 2m.TaflkAd - 8rrt'_,a2,2kAd +

24,,32k'2a2Ad _ 24a23kA2d + 24k2a2f_A d - 48a_k;_2Ad_d + 8a2_A3 d -

8k3a2 3 + 4/33_a2A_ + ,)._2 + 2,),j32Ad,_d + 4,.,/ry/j'_dAd + 4?CrfffAdAd --

2_ "2

4_a flA d - 8i32k_/o-2Ad + 4_a_2,_d'_d + .)i_3 _ + 8/_4a2A3 + 24,(_3a2A_._d _

24_33aekA_ + 24a'_2_AdA_

(4.7)

The set of equations to be integrated numerically is given by Equations (2.1) and (4.7), where u is given

by Equations (4.1) and (4.4). The reader must notice that Ad does not depend on the states and that both

equations are coupled via u. Numerical simulations with E(t) = a + bsin(wt)cos(wt) are shown in Figure
(5.8).

5. Conclusions. This paper studies the stabilization and tracking control of the Lorenz system using

feedback linearization and differential flatness. When the Rayleigh number is used as the control variable,

the system is uncontrollable in a manifold of the state space. In the vicinity of such a singularity, the control

demands grow unbounded. Composite controllers that use feedback linearization and the system response

to step inputs are proposed to overcome this difficulty. By inducing the chaotic response within a boundary

layer which contains the singular plane, the transition to desired states is achieved. Such controls can be

used not only to enlarge the controllability region of the system to the whole state space but also to mitigate

high control demands. Control objectives and initial conditions that imply single and multiple crossings of

the b()undary layer are studied in the examples. In addition, tracking control problems that involve single

and cooperative relations among the states are studied using the differential flatness of the system. Problems

with control objectives that lead to integrable and non-integrable differential equations for the desired flat

output are considered. A numerical approach in which the state equations and the differential equation for

the nominal flat output are simultaneously integrated is proposed and validated. Numerical simulations led

to excellent performances.
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FIG. 5.1. Nominal time histories of u (solid line), z (dot-dashed line), y (dotted line), and z (dashed line) when the

reference trajectory is xd(t) = 5 + 6sin(_t).
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FIG. 5.2. Time evolutions of the state variables and the control with 6 = 0.1, a = 8 and b ---- 5. The control is activated

after 30s. The system does not reach the boundary layer.
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FIG. 5.3. Time evolutions of the state variables and the control with 5 = 0.:', a = 0 and b = 10. The control is activated

after 30s. Sharp peaks in the control curve indicate that the system reaches the singularity.
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FIG. 5.,l. Time evolutions of the state variables and control with ¢_= 0.5, a = 0 and b --- 10. 7"he control is aetwated after

30s. Sharp peaks in the control curve indicate that the system reaches the singularity.
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FIG. 5.5. Time evolutions of the state variables and the control for tracking the hyper-plane h(x, t) = x e - z - 15- 5 sin(wt).

The following conventions are used x(dotted line), y(dot-dashed line), z(dashed line), u(solid line) and h(thick line)
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FIG. 5.6. Time evolutions of the state variables and the control for tracking the hyper-plane h(x) = z 2 - z - 10. The

followin 9 conventions are used z (dotted line), y(dot-dashed line), z (dashed line), u (solid line) and h (thick line).
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FIG. 5.7. Time evolutions of the state variables and the control for tracking the hyper-plane h(x) = x 2 + y2 + z 2 _ 4. The

following conventions are used x(dotted line), y(dot-dashed line), z(dashed line), u(solid line), and h(thiek line)
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FIG. 5.8. On the top, time evolutions of the states x(dotted line), !_(dasSed line) and z(solid line) are shown. In the

middle, time evolutions .for the fiat output and its derivatives are shown. In the' bottom, time evolutions of E(t) for both, the

desired (solid line) and the real (dotted line) fiat outputs are shown.
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